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A certain double-wen potential related to SU(2) symmetry 

Henryk Konwent, Pawel Machnikowski and Andrzej Radoszi. 
Institute of Physics, Technical Univ&ty of Wmciaw, Wybnek Wyspidskiego 27,50-370 
Wroctaw, Poland 

Received 10 March 1995 

Abstract. In the present paper we analyse a class of partially exactly solvable,one-dimensional 
double-weX potentials. We show how the underlying SU(2) dynamical symmetry makes it 
possible analytically to find several energy levels. 

1. Introduction 

The importance and usefulness of the double-well potential 

V ( x )  = -AxZ + E x 4  (1) 
in quantum mechanics, statistical physics or field theory can hardly be overestimated. 
Nevertheless, there are no exact, analytical, results in the problems involving the potential 
(1). On the other hand, it was reported recently [l-31 that some exact eigenvalues of the 
double-well potential 

(2)  
might be found for a certain choice of the parameters VQ and A. In the present paper we 
make use of some general ideas submitted in [21 and [ 11 to study the properties of the model 
(2) and the reasons for its exact solvability. Usually, one expects that exact solvability of the 
spectrum indicates the presence of a geometrical or dynamical ('hidden') symmetry [&lo]. 

Several examples of solvable potentials generated by the su(l.1) algebra are discussed 
in [ll]. It was also shown that exactly solvable onedimensional models can be obtained 
as projections from two-dimensional models which have a symmetry. The relation of such 
onedimensional models (Poschl-Teller, Morse, Coulomb and other potentials) to the su(2) 
algebra was discussed by Alhassid et al [12] and by Ghosh et al [13]. There are two 
characteristic features common to all of these exactly solvable one-dimensional models: 

V ( X )  = V~(ACOS~UX - 1)' (0 c A < 1) 

(i) all the bound states are known exactly; 
(ii) onedimensional models are projections of two-dimensional models. 
In the present paper we will show how the relation with the su(2) algebra underlies the 

solvability of the potential (2). h t h i s  sense, the model is similar to the above mentioned 
exactly solvable onedimensional models related to the SU(2) dynamical symmetry. 
However, it differs from them in both listed points: 

(i) only a finite sequence of the lowest-lying levels is known; 
(ii) the exact solvability is an inherent feature of the model (2)  without any relations to 

two-dimensional models. 
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We will also propose some other related exactly solvable models, which are part of the 

The Schrtklinger equation for a particle of mass na in the potential (2) is 
very wide class of models, as discussed in [14]. 

1 ---+Vo(Acosha.~-I)~-E Y(x)=O. 

VO and A can be expressed in terms of dimensionless parameters S and B: 

Pa2 
8m 

B 

v, = - (2s + 1)2 

(2s + 1) 
A =  

(3) 

-+~<s<oo B > 0. (6) 
Furthermore, let us introduce the dimensionless unit { = ax to obtain the following equation 

[H - E] Y({) = 0 (7) 
where 

d2 1 
a2 4 

H = -- + -B2sinh2 { - B 

The analogy between the Hamiltonian H and the spin Hamiltonian 

H, = -S: - BS, (10) 
was underlined in [ Z ] .  It is possible to exploit this formal analogy in order to find the 
reasons why some energy levels and eigenfunctions can be given in a closed analytical 
form. It can be shown that SU(2) is the dynamical symmetry group of the Hamiltonian (8). 
The well known facts concerning the representations of the su(2) Lie algebra allow us to 
create a well defined procedure to construct the analytically obtainable levels. Some further 
conclusions can be drawn on this basis as well. 

2. A certain representation of the su(2) Lie algebra 

The following operators acting on a subset of L2(R) can be defined [Z]: 

(11) 

(12) 

B .  d S, = Scoshc - -sinhZ< -sinh[- 
2 d< 

- Ssinhc + - mnh< cosh< +cosh{- B .  
2 

B .  d s, = -smhc f -_ 
2 d< 

These operators fulfil the commutation relations of spin operators, that is 

which means that they are the standard basis of a representation of the su(2) algebra, 
multiplied by i. The special feature of the representation (11)-(12) is that 

[Si. Sj] = iqjtSt (14), 

S:+ S,’+ S: S(S+ 1). Id. (15) 
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The Hamiltonian constructed according to (10) using the representation defined above is 
(8), therefore one can express the double-well Hamiltonian (8) in terms of elements of the 
su(2) Lie algebra. The su(2) algebra describes the dynamical symmetry of the system, i.e. 
any subspace of L2@) invariant under the algebra is obviously invariant under the action 
of the Hamiltonian as well. The existence of a finitedimensional invariant subspace allows 
to replace the original problem (7) by a matrix problem (i.e. to restrict the problem to a 
finitedimensional subspace). 

Let us define the raising and lowering operators [15, section 7.3,16] which, in terms of 
the spin operators, are expressed by 

S+ = S, +is, (16) 
S- = S, -is,. (17) 

It seems worth investigating whether a finite-dimensional invariant subspace can exist 
and what dimension it can have. To this end we follow the discussion in [U] and consider 
an invariant finite-dimensional and irreducible subspace V of the representation space of 
the algebra. Using the fact that S, must have at least one eigenvector in this space (as 
it is a complex space) and employing the ‘raising’ and ‘lowering’ feature of S+ and S- 
respectively, we can construct a set of non-zero vectors fi . . . fu belonging to different 
eigenvalues 1, I + 1 ,  . . . , U of S, (and therefore linearly independent), such that S+ fx = 0 
and S-fi = 0. 

The Casimir operator for su(2) in terms of the raising and lowering operators has the 
form 

(18) 
As has already been stated, for the representation considered here it is identically equal to 
S(S + 1). Therefore 

2 sz = s+s- + s: - s, = s-s+ + s, + s,. 

S(S + I)f& = S2fU = [S-S, + S,(& + 1)lf” = u(u + 1)fU (19) 

(20) 
Combining (19) and (20) we obtain U (U + 1) = S(S + 1) = I ( [ -  1). As U 2 1 by definition, 
we find that 1 = -U; U 2 0. Because U - 1  = n, where n is a natural number, we find that 
2u must be a non-negative integer. Furthermore, as S > -1/2, we have S = U .  This is an 
essential conclusion: the existence of a finitedimensional subspace which is invariant under 
the algebra generated by the operators S,, S,, S, requires that 2.7 should be integer. The 
2s  + 1 vectors fk = S Y k  fu; n = -U ,  -U + 1 ,  ..., U belong to different eigenvalues of S, 
and therefore they are linearly independent. The subspace they span is invariant. Because 
we assumed that V is $educible, the subspace spanned by these vectors must be V itself. 

Hence, an irreducible finite-dimensional subspace invariant under the operators S,, S,, 
S, can exist only when 2s is a non-negative integer; its dimension is then 2s + 1 and it is 
spanned by the basis 

and 

S(S + 1)fi = szfi = [S+S- + S,(S, - l)]fi = l ( 1 -  1)fi. 

(21) 2s fs. s-fs = fs-1,. . . , s- fs = f-s. 

3. Construction of the invariant subspace and the solution of the eigenvalue problem 
for S = 1 

As an example, for simplicity, let us consider the case of S = 1. Nevertheless, the cases 
S = 3/2, S = 2 can be solved in the same manner. 
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In the discussed case the invariant subspace is spanned by 

h ( f )  =exp(< - iBcosh<) fo(c)=fiexp($Bcoshc) 

f-I (<) = exp(-c - 4 B  cosh F). 
The Hamiltonian in this subspace has the form 

O 1  H = -S. 2 - BS, = l-i/fi 0 -B/& 
1 -BI& 

The eigenvectors are 

which in terms of the basis functions reads 

The corresponding eigenvalues of the matrix Hamiltonian are 

EO = -1 2 (l+Jizq ~~ 

E2 = -4 (1 - V G - q .  

E ,  = - I  

The three lowest energy levels of the original system with the potential (2) are, therefore, 
(see (9)) 

h2a2 %'az 
Eo = - 8m (B2 + 7 - 2- = - 8m (A2 + 9 9  - ?,I-) 
El = h2a2 - (B2+5) 97i2a2 - (A2 + ;) 

8m 8m 
h2a2 (B2+7+2- 7 2  

E2 = - 8m 
where we have returned to the original parameter A, according to (4) and (5). 

We can determine how the energy levels lie in relation to the top of the potential hump 
V, = Vo(1 - A)'. For S = 1, Vo = 9h2a2/8m, one finds that E2 always lies above the 
potential hump, E2 7 V,. For A small enough, A < i, EO and E ,  can both be found 
within the wells. When A increases, EO and E1 rise and for A large enough, A z $, all 
the energy levels lie above the top of the potential hump. 

4. The cases of larger S and 25 non-integer 

For S 2, 2s integer, the problem is reduced to a finite matrix problem in the same 
way as described above. There are, however, no analytical solutions, as matrices of higher 
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dimensions cannot be exactly diagonalized. On the other hand, let us remark that the matrix 
Hamiltonian we obtain is always a finite threediagonal matrix of the form 

L ... 
From the point of view of numerical computations, the eigenvalue problem for this matrix 
is of complexity S, whereas for a general finite problem it would be of complexity S2. 
Moreover, solutions of this problem arbitrarily close to exact ones may he achieved without 
changing the dimension of the matrix, which is not the case for a general eigenvalue problem 
in an infinite space. 

When 2s is non-integer, there cannot exist any invariant subspace. However, S- f-s = 
0, which makes it possible to create a tu representation [15]. The Hamiltonian (8) in this 

~ 

representation has the form 
~ ~i bi 0 ... 

-h az b2 0 ... 
0 -h a3 ... 
0 0 -b3 a4 ... 

which can be an appropriate starting point for approximate estimations. 

5. Other potentials generated by su(2) 

For any operators of the form g ( x ) + h ( x ) g  and satisfying the su(2) commutation relations, 
the most general combination including up to the second power of these operators, satisfying 
the three conditions characteristic of the Schradinger equation, i.e. 

(i) there is no first derivative term, 
(ii) the coefficient at & is constant, 
(iii) the potential (i.e. the non-derivative term) is real, 

leads to several classes of potentials, as analysed in [14]. Two of them are the potentials 
listed in [ Z ] :  

(i) Single and double-well potentials, given by 

which become asymmetrical for C f 0; 
(ii) periodical potentials 

which for C # 0 is a potential of the kind of a onedimensional heteroatomic lattice. The 
method presented above is fully applicable for this potential and one can find wavefunctions 
corresponding to k = 0 (k is the wavevector) and k = 1/2 for S integer and half-integer, 
respectively [ Z ] .  

Another example of such a class of potentials is given in [14]. 
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6. Conclusions 

The reasons for the exact solvability of thc Razavy double-well-type potential have been 
discussed. As the Hamiltonian could be expressed as a combination up to the second power 
of operators belonging to the su(2) algebra, one can expect the appearance of invariant 
subspaces. In this case, however, in contrast to many other exactly solvable one-dimensional 
models, only a finite sequence of infinite number of bound states is known. This feature 
is related to the fact that the Casimir operator S: + S: + S," S(S + 1)1 is in this case 
associated with the model parameter S. Therefore, only 2.9 + 1 levels might be found 
exactly for half-integer S. One finds that these are the lowest energy levels. 

The model discussed here turns out to be one of a wider class of models that can be 
obtained in a similar way, with the same characteristic feature: 2s + 1 energy levels are 
known exactly. 

It should be pointed out that this type of exact solvability is an inherent feature of a 
one-dimensional model. 
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